3.1.78 \(\int \frac {\sqrt {e \cot (c+d x)}}{(a+b \cot (c+d x))^2} \, dx\) [78]

Optimal. Leaf size=386 \[ \frac {\sqrt {b} \left (3 a^2-b^2\right ) \sqrt {e} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \text {ArcTan}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d} \]

[Out]

1/2*(a^2+2*a*b-b^2)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/(a^2+b^2)^2/d*2^(1/2)-1/2*(a^2+2*a*
b-b^2)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))*e^(1/2)/(a^2+b^2)^2/d*2^(1/2)-1/4*(a^2-2*a*b-b^2)*ln(e^(
1/2)+cot(d*x+c)*e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))*e^(1/2)/(a^2+b^2)^2/d*2^(1/2)+1/4*(a^2-2*a*b-b^2)*ln(e^(
1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot(d*x+c))^(1/2))*e^(1/2)/(a^2+b^2)^2/d*2^(1/2)+(3*a^2-b^2)*arctan(b^(1/2)
*(e*cot(d*x+c))^(1/2)/a^(1/2)/e^(1/2))*b^(1/2)*e^(1/2)/(a^2+b^2)^2/d/a^(1/2)+b*(e*cot(d*x+c))^(1/2)/(a^2+b^2)/
d/(a+b*cot(d*x+c))

________________________________________________________________________________________

Rubi [A]
time = 0.43, antiderivative size = 386, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.480, Rules used = {3649, 3734, 3615, 1182, 1176, 631, 210, 1179, 642, 3715, 65, 211} \begin {gather*} \frac {\sqrt {b} \sqrt {e} \left (3 a^2-b^2\right ) \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} d \left (a^2+b^2\right )^2}+\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d \left (a^2+b^2\right )^2}-\frac {\sqrt {e} \left (a^2+2 a b-b^2\right ) \text {ArcTan}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d \left (a^2+b^2\right )^2}+\frac {b \sqrt {e \cot (c+d x)}}{d \left (a^2+b^2\right ) (a+b \cot (c+d x))}-\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^2}+\frac {\sqrt {e} \left (a^2-2 a b-b^2\right ) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d \left (a^2+b^2\right )^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x])^2,x]

[Out]

(Sqrt[b]*(3*a^2 - b^2)*Sqrt[e]*ArcTan[(Sqrt[b]*Sqrt[e*Cot[c + d*x]])/(Sqrt[a]*Sqrt[e])])/(Sqrt[a]*(a^2 + b^2)^
2*d) + ((a^2 + 2*a*b - b^2)*Sqrt[e]*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2
*d) - ((a^2 + 2*a*b - b^2)*Sqrt[e]*ArcTan[1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*(a^2 + b^2)^2*
d) + (b*Sqrt[e*Cot[c + d*x]])/((a^2 + b^2)*d*(a + b*Cot[c + d*x])) - ((a^2 - 2*a*b - b^2)*Sqrt[e]*Log[Sqrt[e]
+ Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d) + ((a^2 - 2*a*b - b^2)*Sqr
t[e]*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*(a^2 + b^2)^2*d)

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1182

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]

Rule 3615

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rule 3649

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Dist[1/((m + 1)*(a^2
+ b^2)), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)*
(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
 a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]

Rule 3715

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Dist[A/f, Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x]
 /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]

Rule 3734

Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[1/(a^2 + b^2), Int[(c + d*Tan[e + f*
x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Dist[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2), Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !GtQ[n, 0] &&  !LeQ[n, -
1]

Rubi steps

\begin {align*} \int \frac {\sqrt {e \cot (c+d x)}}{(a+b \cot (c+d x))^2} \, dx &=\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\int \frac {-\frac {b e}{2}-a e \cot (c+d x)+\frac {1}{2} b e \cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{a^2+b^2}\\ &=\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\int \frac {-2 a b e-\left (a^2-b^2\right ) e \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx}{\left (a^2+b^2\right )^2}-\frac {\left (b \left (3 a^2-b^2\right ) e\right ) \int \frac {1+\cot ^2(c+d x)}{\sqrt {e \cot (c+d x)} (a+b \cot (c+d x))} \, dx}{2 \left (a^2+b^2\right )^2}\\ &=\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {2 \text {Subst}\left (\int \frac {2 a b e^2+\left (a^2-b^2\right ) e x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac {\left (b \left (3 a^2-b^2\right ) e\right ) \text {Subst}\left (\int \frac {1}{\sqrt {-e x} (a-b x)} \, dx,x,-\cot (c+d x)\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}+\frac {\left (b \left (3 a^2-b^2\right )\right ) \text {Subst}\left (\int \frac {1}{a+\frac {b x^2}{e}} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}+\frac {\left (\left (a^2-2 a b-b^2\right ) e\right ) \text {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}-\frac {\left (\left (a^2+2 a b-b^2\right ) e\right ) \text {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{\left (a^2+b^2\right )^2 d}\\ &=\frac {\sqrt {b} \left (3 a^2-b^2\right ) \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \left (a^2+b^2\right )^2 d}+\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\left (\left (a^2-2 a b-b^2\right ) \sqrt {e}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (\left (a^2-2 a b-b^2\right ) \sqrt {e}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (\left (a^2+2 a b-b^2\right ) e\right ) \text {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}-\frac {\left (\left (a^2+2 a b-b^2\right ) e\right ) \text {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \left (a^2+b^2\right )^2 d}\\ &=\frac {\sqrt {b} \left (3 a^2-b^2\right ) \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \left (a^2+b^2\right )^2 d}+\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (\left (a^2+2 a b-b^2\right ) \sqrt {e}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (\left (a^2+2 a b-b^2\right ) \sqrt {e}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}\\ &=\frac {\sqrt {b} \left (3 a^2-b^2\right ) \sqrt {e} \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {e \cot (c+d x)}}{\sqrt {a} \sqrt {e}}\right )}{\sqrt {a} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}-\frac {\left (a^2+2 a b-b^2\right ) \sqrt {e} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {b \sqrt {e \cot (c+d x)}}{\left (a^2+b^2\right ) d (a+b \cot (c+d x))}-\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}+\frac {\left (a^2-2 a b-b^2\right ) \sqrt {e} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} \left (a^2+b^2\right )^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.
time = 6.10, size = 401, normalized size = 1.04 \begin {gather*} -\frac {\sqrt {e \cot (c+d x)} \left (-\frac {4 a^{3/2} \sqrt {b} \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )}{\left (a^2+b^2\right )^2}+\frac {4 a b \sqrt {\cot (c+d x)}}{\left (a^2+b^2\right )^2}-\frac {\sqrt {b} \left (-a \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right )+\sqrt {a} \sqrt {b} \sqrt {\cot (c+d x)}-b \text {ArcTan}\left (\frac {\sqrt {b} \sqrt {\cot (c+d x)}}{\sqrt {a}}\right ) \cot (c+d x)\right )}{\sqrt {a} \left (a^2+b^2\right ) (a+b \cot (c+d x))}+\frac {2 (a-b) (a+b) \cot ^{\frac {3}{2}}(c+d x) \, _2F_1\left (\frac {3}{4},1;\frac {7}{4};-\cot ^2(c+d x)\right )}{3 \left (a^2+b^2\right )^2}-\frac {a b \left (2 \left (\sqrt {2} \text {ArcTan}\left (1-\sqrt {2} \sqrt {\cot (c+d x)}\right )-\sqrt {2} \text {ArcTan}\left (1+\sqrt {2} \sqrt {\cot (c+d x)}\right )\right )+8 \sqrt {\cot (c+d x)}+\sqrt {2} \log \left (1-\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )-\sqrt {2} \log \left (1+\sqrt {2} \sqrt {\cot (c+d x)}+\cot (c+d x)\right )\right )}{2 \left (a^2+b^2\right )^2}\right )}{d \sqrt {\cot (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cot[c + d*x]]/(a + b*Cot[c + d*x])^2,x]

[Out]

-((Sqrt[e*Cot[c + d*x]]*((-4*a^(3/2)*Sqrt[b]*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]])/(a^2 + b^2)^2 + (4*
a*b*Sqrt[Cot[c + d*x]])/(a^2 + b^2)^2 - (Sqrt[b]*(-(a*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]]) + Sqrt[a]*
Sqrt[b]*Sqrt[Cot[c + d*x]] - b*ArcTan[(Sqrt[b]*Sqrt[Cot[c + d*x]])/Sqrt[a]]*Cot[c + d*x]))/(Sqrt[a]*(a^2 + b^2
)*(a + b*Cot[c + d*x])) + (2*(a - b)*(a + b)*Cot[c + d*x]^(3/2)*Hypergeometric2F1[3/4, 1, 7/4, -Cot[c + d*x]^2
])/(3*(a^2 + b^2)^2) - (a*b*(2*(Sqrt[2]*ArcTan[1 - Sqrt[2]*Sqrt[Cot[c + d*x]]] - Sqrt[2]*ArcTan[1 + Sqrt[2]*Sq
rt[Cot[c + d*x]]]) + 8*Sqrt[Cot[c + d*x]] + Sqrt[2]*Log[1 - Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]] - Sqrt[
2]*Log[1 + Sqrt[2]*Sqrt[Cot[c + d*x]] + Cot[c + d*x]]))/(2*(a^2 + b^2)^2)))/(d*Sqrt[Cot[c + d*x]]))

________________________________________________________________________________________

Maple [A]
time = 0.63, size = 391, normalized size = 1.01

method result size
derivativedivides \(-\frac {2 e^{3} \left (-\frac {b \left (\frac {\left (\frac {a^{2}}{2}+\frac {b^{2}}{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{e \cot \left (d x +c \right ) b +a e}+\frac {\left (3 a^{2}-b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 \sqrt {a e b}}\right )}{e^{2} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {\left (a^{2}-b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{2} e^{2}}\right )}{d}\) \(391\)
default \(-\frac {2 e^{3} \left (-\frac {b \left (\frac {\left (\frac {a^{2}}{2}+\frac {b^{2}}{2}\right ) \sqrt {e \cot \left (d x +c \right )}}{e \cot \left (d x +c \right ) b +a e}+\frac {\left (3 a^{2}-b^{2}\right ) \arctan \left (\frac {b \sqrt {e \cot \left (d x +c \right )}}{\sqrt {a e b}}\right )}{2 \sqrt {a e b}}\right )}{e^{2} \left (a^{2}+b^{2}\right )^{2}}+\frac {\frac {a b \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{4 e}+\frac {\left (a^{2}-b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )-2 \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )\right )}{8 \left (e^{2}\right )^{\frac {1}{4}}}}{\left (a^{2}+b^{2}\right )^{2} e^{2}}\right )}{d}\) \(391\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-2/d*e^3*(-b/e^2/(a^2+b^2)^2*((1/2*a^2+1/2*b^2)*(e*cot(d*x+c))^(1/2)/(e*cot(d*x+c)*b+a*e)+1/2*(3*a^2-b^2)/(a*e
*b)^(1/2)*arctan(b*(e*cot(d*x+c))^(1/2)/(a*e*b)^(1/2)))+1/(a^2+b^2)^2/e^2*(1/4*a/e*b*(e^2)^(1/4)*2^(1/2)*(ln((
e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1
/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(
e*cot(d*x+c))^(1/2)+1))+1/8*(a^2-b^2)/(e^2)^(1/4)*2^(1/2)*(ln((e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2
^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2)))+2*arctan(2^(1/2)/(e^2
)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-2*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1))))

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 278, normalized size = 0.72 \begin {gather*} \frac {{\left (\frac {4 \, {\left (3 \, a^{2} b - b^{3}\right )} \arctan \left (\frac {b}{\sqrt {a b} \sqrt {\tan \left (d x + c\right )}}\right )}{{\left (a^{4} + 2 \, a^{2} b^{2} + b^{4}\right )} \sqrt {a b}} - \frac {2 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) + 2 \, \sqrt {2} {\left (a^{2} + 2 \, a b - b^{2}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - \frac {2}{\sqrt {\tan \left (d x + c\right )}}\right )}\right ) - \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \log \left (\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right ) + \sqrt {2} {\left (a^{2} - 2 \, a b - b^{2}\right )} \log \left (-\frac {\sqrt {2}}{\sqrt {\tan \left (d x + c\right )}} + \frac {1}{\tan \left (d x + c\right )} + 1\right )}{a^{4} + 2 \, a^{2} b^{2} + b^{4}} + \frac {4 \, b}{{\left (a^{3} + a b^{2} + \frac {a^{2} b + b^{3}}{\tan \left (d x + c\right )}\right )} \sqrt {\tan \left (d x + c\right )}}\right )} e^{\frac {1}{2}}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="maxima")

[Out]

1/4*(4*(3*a^2*b - b^3)*arctan(b/(sqrt(a*b)*sqrt(tan(d*x + c))))/((a^4 + 2*a^2*b^2 + b^4)*sqrt(a*b)) - (2*sqrt(
2)*(a^2 + 2*a*b - b^2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2/sqrt(tan(d*x + c)))) + 2*sqrt(2)*(a^2 + 2*a*b - b^2)*ar
ctan(-1/2*sqrt(2)*(sqrt(2) - 2/sqrt(tan(d*x + c)))) - sqrt(2)*(a^2 - 2*a*b - b^2)*log(sqrt(2)/sqrt(tan(d*x + c
)) + 1/tan(d*x + c) + 1) + sqrt(2)*(a^2 - 2*a*b - b^2)*log(-sqrt(2)/sqrt(tan(d*x + c)) + 1/tan(d*x + c) + 1))/
(a^4 + 2*a^2*b^2 + b^4) + 4*b/((a^3 + a*b^2 + (a^2*b + b^3)/tan(d*x + c))*sqrt(tan(d*x + c))))*e^(1/2)/d

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {e \cot {\left (c + d x \right )}}}{\left (a + b \cot {\left (c + d x \right )}\right )^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(1/2)/(a+b*cot(d*x+c))**2,x)

[Out]

Integral(sqrt(e*cot(c + d*x))/(a + b*cot(c + d*x))**2, x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(1/2)/(a+b*cot(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(sqrt(e*cot(d*x + c))/(b*cot(d*x + c) + a)^2, x)

________________________________________________________________________________________

Mupad [B]
time = 3.08, size = 2500, normalized size = 6.48 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(1/2)/(a + b*cot(c + d*x))^2,x)

[Out]

(b*e*(e*cot(c + d*x))^(1/2))/((a*d*e + b*d*e*cot(c + d*x))*(a^2 + b^2)) - atan(((((((8*(320*a^6*b^9*d^4*e^11 -
 96*a^2*b^13*d^4*e^11 - 32*b^15*d^4*e^11 + 480*a^8*b^7*d^4*e^11 + 288*a^10*b^5*d^4*e^11 + 64*a^12*b^3*d^4*e^11
))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5) - (16*(e*cot(c + d*x))^(1/2)*(e/(4*(a^4
*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2)*(32*b^17*d^4*e^10 + 160*a^2*b^15*d^
4*e^10 + 288*a^4*b^13*d^4*e^10 + 160*a^6*b^11*d^4*e^10 - 160*a^8*b^9*d^4*e^10 - 288*a^10*b^7*d^4*e^10 - 160*a^
12*b^5*d^4*e^10 - 32*a^14*b^3*d^4*e^10))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*
(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) + (16*(e*cot(c + d*x))^(1
/2)*(68*a*b^12*d^2*e^11 + 20*a^3*b^10*d^2*e^11 - 88*a^5*b^8*d^2*e^11 + 40*a^7*b^6*d^2*e^11 + 84*a^9*b^4*d^2*e^
11 + 4*a^11*b^2*d^2*e^11))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2
*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) + (8*(52*a*b^10*d^2*e^12 - 128*a^3*b^8*
d^2*e^12 - 24*a^5*b^6*d^2*e^12 + 160*a^7*b^4*d^2*e^12 + 4*a^9*b^2*d^2*e^12))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^
5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6
i)))^(1/2) - (16*(e*cot(c + d*x))^(1/2)*(3*b^9*e^12 - 3*a^2*b^7*e^12 + 17*a^4*b^5*e^12 - 9*a^6*b^3*e^12))/(a^8
*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2
- 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2)*1i - (((((8*(320*a^6*b^9*d^4*e^11 - 96*a^2*b^13*d^4*e^11 - 32*b^15*d^4
*e^11 + 480*a^8*b^7*d^4*e^11 + 288*a^10*b^5*d^4*e^11 + 64*a^12*b^3*d^4*e^11))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d
^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5) + (16*(e*cot(c + d*x))^(1/2)*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2
- 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2)*(32*b^17*d^4*e^10 + 160*a^2*b^15*d^4*e^10 + 288*a^4*b^13*d^4*e^10 + 16
0*a^6*b^11*d^4*e^10 - 160*a^8*b^9*d^4*e^10 - 288*a^10*b^7*d^4*e^10 - 160*a^12*b^5*d^4*e^10 - 32*a^14*b^3*d^4*e
^10))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*
a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) - (16*(e*cot(c + d*x))^(1/2)*(68*a*b^12*d^2*e^11 + 20*a^3*b^
10*d^2*e^11 - 88*a^5*b^8*d^2*e^11 + 40*a^7*b^6*d^2*e^11 + 84*a^9*b^4*d^2*e^11 + 4*a^11*b^2*d^2*e^11))/(a^8*d^4
 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*
a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) + (8*(52*a*b^10*d^2*e^12 - 128*a^3*b^8*d^2*e^12 - 24*a^5*b^6*d^2*e^12 + 16
0*a^7*b^4*d^2*e^12 + 4*a^9*b^2*d^2*e^12))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5))
*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) + (16*(e*cot(c + d*x))^(
1/2)*(3*b^9*e^12 - 3*a^2*b^7*e^12 + 17*a^4*b^5*e^12 - 9*a^6*b^3*e^12))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*
a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(
1/2)*1i)/((((((8*(320*a^6*b^9*d^4*e^11 - 96*a^2*b^13*d^4*e^11 - 32*b^15*d^4*e^11 + 480*a^8*b^7*d^4*e^11 + 288*
a^10*b^5*d^4*e^11 + 64*a^12*b^3*d^4*e^11))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5)
 - (16*(e*cot(c + d*x))^(1/2)*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(
1/2)*(32*b^17*d^4*e^10 + 160*a^2*b^15*d^4*e^10 + 288*a^4*b^13*d^4*e^10 + 160*a^6*b^11*d^4*e^10 - 160*a^8*b^9*d
^4*e^10 - 288*a^10*b^7*d^4*e^10 - 160*a^12*b^5*d^4*e^10 - 32*a^14*b^3*d^4*e^10))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^
6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d
^2*6i)))^(1/2) + (16*(e*cot(c + d*x))^(1/2)*(68*a*b^12*d^2*e^11 + 20*a^3*b^10*d^2*e^11 - 88*a^5*b^8*d^2*e^11 +
 40*a^7*b^6*d^2*e^11 + 84*a^9*b^4*d^2*e^11 + 4*a^11*b^2*d^2*e^11))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*
b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2)
 + (8*(52*a*b^10*d^2*e^12 - 128*a^3*b^8*d^2*e^12 - 24*a^5*b^6*d^2*e^12 + 160*a^7*b^4*d^2*e^12 + 4*a^9*b^2*d^2*
e^12))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5))*(e/(4*(a^4*d^2*1i + b^4*d^2*1i + 4
*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) - (16*(e*cot(c + d*x))^(1/2)*(3*b^9*e^12 - 3*a^2*b^7*e^12 +
 17*a^4*b^5*e^12 - 9*a^6*b^3*e^12))/(a^8*d^4 + b^8*d^4 + 4*a^2*b^6*d^4 + 6*a^4*b^4*d^4 + 4*a^6*b^2*d^4))*(e/(4
*(a^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2) + (((((8*(320*a^6*b^9*d^4*e^11
 - 96*a^2*b^13*d^4*e^11 - 32*b^15*d^4*e^11 + 480*a^8*b^7*d^4*e^11 + 288*a^10*b^5*d^4*e^11 + 64*a^12*b^3*d^4*e^
11))/(a^8*d^5 + b^8*d^5 + 4*a^2*b^6*d^5 + 6*a^4*b^4*d^5 + 4*a^6*b^2*d^5) + (16*(e*cot(c + d*x))^(1/2)*(e/(4*(a
^4*d^2*1i + b^4*d^2*1i + 4*a*b^3*d^2 - 4*a^3*b*d^2 - a^2*b^2*d^2*6i)))^(1/2)*(32*b^17*d^4*e^10 + 160*a^2*b^15*
d^4*e^10 + 288*a^4*b^13*d^4*e^10 + 160*a^6*b^11...

________________________________________________________________________________________